

Short Note

5-Chloro-4-iodo-1,3-dimethyl-1*H*-pyrazole

Gytė Vilkauskaitė 1,2, Gernot A. Eller 1, Algirdas Šačkus 2 and Wolfgang Holzer 1,*

- Department of Drug and Natural Product Synthesis, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- ² Institute of Synthetic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
- * Author to whom correspondence should be addressed; E-Mail: wolfgang.holzer@univie.ac.at.

Received: 14 September 2009 / Accepted: 18 September 2009 / Published: 21 September 2009

Abstract: Reaction of 5-chloro-1,3-dimethyl-1*H*-pyrazole with I₂/HIO₃ in refluxing acetic acid gives the title compound in good yield. Detailed spectroscopic data (¹H NMR, ¹³C NMR, ¹⁵N NMR, IR, MS) are presented.

Keywords: pyrazole; iodination; NMR spectroscopy

(Hetero)aryl halides are valuable starting materials for different transition-metal-catalyzed cross coupling reactions. In the recent past, these reactions have emerged as extraordinaryly important methods for C–C and also C–X (X = O, N, S) bond formation in organic chemistry [1,2].

In the Sonogashira coupling, terminal acetylenes react with, for instance, (hetero)aryl halides or triflates to afford the corresponding (hetero)aryl alkynes [3,4]. Comparing the reactivity of the possible aryl reactants, the general order of reactivity is aryl iodides > aryl triflates ≥ aryl bromides >> aryl chlorides [4]. Accordingly, the best results in many reactions can be obtained with aryl iodides. This is also confirmed for pyrazolyl halides, in which a clear preference for iodides over bromides and chlorides is evident [5].

In the course of a synthetic program dedicated to the functionalization of halogenopyrazoles [6-9], we were interested in 4-iodopyrazole **2**, which was – amongst others – considered as a possible precursor in Sonogashira-type couplings. The synthesis of compound **2** was achieved by reaction of commercially available 5-chloro-1,3-dimethyl-1*H*-pyrazole (**1**) with I₂/HIO₃ in refluxing acetic acid (Scheme 1). Thus, the desired iodopyrazole **2** was obtained in 75% yield after flash chromatography.

Molbank **2009** M620 (Page 2)

Experimental

The melting point was determined on a Reichert–Kofler hot-stage microscope and is uncorrected. Mass spectrum: Shimadzu QP 1000 instrument (EI, 70 eV). IR spectrum: Perkin-Elmer FTIR Spectrum 1000 instrument (KBr-disc). The elemental analysis was performed at the Microanalytical Laboratory, University of Vienna. 1 H and 13 C NMR spectra were recorded on a Varian UnityPlus 300 spectrometer at 28 °C (299.95 MHz for 1 H, 75.43 MHz for 13 C). The centre of the solvent signal was used as an internal standard which was related to TMS with $\delta = 7.26$ ppm (1 H in CDCl₃) and $\delta = 77.0$ ppm (13 C in CDCl₃). The digital resolutions were 0.2 Hz/data point in the 1 H and 0.4 Hz/data point in the 1 H-coupled 13 C-NMR spectra (gated decoupling). The 15 N NMR spectrum (50.68 MHz, refocused and decoupled INEPT) was obtained on a Bruker Avance 500 instrument with a 'directly' detecting broadband observe probe (BBFO) and was referenced against external nitromethane.

5-Chloro-4-iodo-1,3-dimethyl-1H-pyrazole (2)

To a solution of 5-chloro-1,3-dimethyl-1*H*-pyrazole (1) (2.500 g, 19.15 mmol) in glacial acetic acid (10 mL) was added HIO₃ (674 mg, 3.8 mmol) and the mixture was stirred for 10 minutes. Then I₂ (3.884 g, 15.3 mmol) was added and the mixture was heated to reflux for 4 h. After cooling, the mixture was treated with 2N NaOH until the dark color disappeared, then some drops of Na₂S₂O₃ solution were added to obtain a colorless solution. The mixture was exhaustively extracted with dichloromethane, the combined organic layers were washed with water, dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, eluent: light petroleum–ethyl acetate, 10:1) to afford 3.683 g (75%) of 2 as colorless crystals, mp 64–65 °C.

IR (KBr) ν (cm⁻¹): 2923, 1497, 1350, 1271, 1107, 1053, 1022, 638.

MS (EI, 70 eV): (*m/z*, %) 256/258 (M⁺, 19/7), 160 (14), 128 (24), 96 (18), 64 (100).

¹H NMR (CDCl₃): δ (ppm) 2.22 (s, 3H, 3-Me), 3.84 (s, 3H, 1-Me).

¹³C NMR (CDCl₃): δ (ppm) 14.4 (3-Me, ${}^{1}J = 128.3 \text{ Hz}$), 37.1 (1-Me, ${}^{1}J = 141.1 \text{ Hz}$), 60.8 (C-4, ${}^{3}J(\text{C4,3-Me}) = 4.3 \text{ Hz}$), 131.3 (C-5, ${}^{3}J(\text{C5,1-Me}) = 2.4 \text{ Hz}$), 150.4 (C-3, ${}^{2}J(\text{C3,3-Me}) = 6.9 \text{ Hz}$).

¹⁵N NMR (CDCl₃): δ (ppm) –186.1 (N-1), –77.5 (N-2).

Molbank **2009** M620 (Page 3)

Anal. Calcd for $C_5H_6CIIN_2$: C, 23.42%; H, 2.36%; N, 10.92%. Found: C, 23.76%; H, 2.34%; N, 10.81%.

Acknowledgements

Gytė Vilkauskaitė thanks the Erasmus student exchange program for providing a scholarship.

References and Notes

- 1. Negishi, E.; de Meijere, A. *Handbook of Organopalladium Chemistry for Organic Synthesis*; John Wiley & Sons: New York, NY, USA, 2002; Vol. 1 and Vol. 2.
- 2. de Meijere, A.; Diederich, F. *Metal-Catalyzed Cross-Coupling Reactions*; Wiley-VCH: Weinheim, Germany, 2004; Vol. 1 and Vol. 2.
- 3. Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. *Tetrahedron Lett.* **1975**, *16*, 4467–4470.
- 4. Chinchilla, R.; Nájera, C. The Sonogashira reaction: A booming methodology in synthetic organic chemistry. *Chem. Rev.* **2007**, *107*, 874–922.
- 5. Vasilevsky, S. F.; Tretyakov, E. V.; Elguero, J. Synthesis and properties of acetylenic derivatives of pyrazoles. *Adv. Heterocycl. Chem.* **2002**, 82, 1–99.
- 6. Heinisch, G.; Holzer, W.; Huber, T. Ein effizienter Zugang zu Aryl- oder Benzyl-4-pyrazolylketonen und –carbinolen. *Arch. Pharm.* (Weinheim) **1987**, 320, 1267–1272.
- 7. Heinisch, G.; Holzer, W.; Obala, C. Beiträge zur Chemie von Pyrazolylalkinen. *Monatsh. Chem.* **1988**, *119*, 253–262.
- 8. Hahn, M.; Heinisch, G.; Holzer, W.; Schwarz, H. Synthesis of novel heteroaryl 4-pyrazolyl ketones. *J. Heterocycl. Chem.* **1991**, 28, 1189–1192.
- 9. Arbačiauskienė, E.; Vilkauskaitė, G.; Eller, G. A.; Holzer, W., Šačkus, A. Pd-catalyzed cross-coupling reactions of halogenated 1-phenylpyrazol-3-ols and related triflates. *Tetrahedron* **2009**, 65, 7817–7824.
- © 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).