THE 4-METHOXYBENZYL (PMB) FUNCTION AS A VERSATILE PROTECTING GROUP IN THE SYNTHESIS OF N-UNSUBSTITUTED PYRAZOLONES

Gernot A. Eller and Wolfgang Holzer*

Abstract

Department of Pharmaceutical Chemistry, University of Vienna, Pharmaziezentrum, Althanstrasse 14, A-1090 Vienna, Austria e-mail: holzer@merian.pch.univie.ac.at

Abstract

Starting from diethyl ethoxymethylenemalonate and 4-methoxybenzylhydrazine (PMB-NHNH2) 2-(4-methoxybenzyl)-2,4-dihydro-3H-pyrazol-3-one was prepared. Reaction of the latter with carboxylic acid chlorides / calcium hydroxide in 1,4-dioxane afforded 4-acyl-5-hydroxy-1-PMB-1H-pyrazoles, whereas with dimethylformamide diethyl acetal or benzaldehyde the corresponding (E)-4-dimethylaminomethylene or (E)-4-benzylidene products, respectively, were obtained. The PMB protecting group could be conveniently removed from the pyrazole nucleus by treatment with trifluoroacetic acid to give the N-unsubstituted pyrazolones. Detailed NMR spectroscopic investigations (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$) with the obtained compounds are presented.

INTRODUCTION

N1-Substituted 2-pyrazolin-5-ones are important synthetic targets as a consequence of their prevalence in numerous pharmaceuticals, agrochemicals, dyes and pigments as well as in chelating and extracting agents. ${ }^{1,2}$ Moreover, they are capable of prototropic tautomerism and can be present as $\mathrm{CH}-(\mathbf{A}), \mathrm{OH}-(\mathbf{B})$ and NH-isomers (C) (Figure 1, upper line), ${ }^{3-5}$ which - according to systematic nomenclature - are designated as 2,4-dihydro-3H-pyrazol-3-ones (A), 1H-pyrazol-5-ols (B), and 1,2-dihydro-3H-pyrazol-3-ones (C). For species with an acyl or aroyl group attached at position 4 of the heterocyclic moiety the number of possible tautomeric forms increases since now the 4 -substituent can participate in tautomerism and also stabilization by intramolecular hydrogen bonds may occur (Figure 1, lower line). ${ }^{3}$ Whereas
numerous investigations have been devoted to the chemistry and also to the tautomeric behavior of N-substituted 4-acylpyrazolones ($\mathrm{R}^{1}=$ alkyl, aryl $)^{6-10}$ relatively little is known about corresponding species lacking a substituent at the pyrazole nitrogen atom $\left(\mathrm{R}^{1}=\mathrm{H}\right)$. Occasionally, ring transformation reactions have been employed for the synthesis of such compounds. ${ }^{11}$ This prompted us to develop a new synthetic methodology for the synthesis of the latter 4-acylpyrazolones (Figure 1, lower line, $\mathrm{R}^{1}=H, R^{3}=H, R^{4}=\mathrm{Me}$, Et, Ph, 2-thienyl, trans-styryl) and some related compounds. Species with $\mathrm{R}^{3}=\mathrm{H}$ seemed especially interesting for investigations regarding tautomerism as the geminal ${ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)$ coupling constant has proven to be a valuable tool for this purpose. ${ }^{10}$

Figure 1. Tautomeric forms of pyrazolones and 4-acylpyrazolones

A

B

C

A

B

C

D

E

B'

D^{\prime}

RESULTS AND DISCUSSION

Chemistry

N1-Substituted 4-acyl-2-pyrazolin-5-ones are typically prepared by treatment of 1 -substituted 2-pyrazolin-5-ones with carboxylic acid chlorides / calcium hydroxide in refluxing dioxane according to the procedure of Jensen. ${ }^{12}$ As this approach obviously is not suitable for the acylation of N-unsubstituted pyrazolones, employment of appropriately N1 protected 2-pyrazolin-5-ones and subsequent removal of the N-substituent should provide an access to N-unsubstituted 4-acylpyrazolones. Such an assistant group on one hand should resist the conditions of primary pyrazole ring synthesis (i.e. condensation of 1,3-dicarbonyl compounds or their synthetic equivalents with substituted hydrazines), on the other hand deprotection should proceed under mild and simple conditions. We anticipated the 4-methoxybenzyl (para-methoxybenzyl $=\mathrm{PMB}$) group to meet these requirements as this system has been successfully
employed under different reaction conditions in pyrazole, ${ }^{13-17}$ but also in imidazole ${ }^{18}$ or 1,2,3-triazole chemistry ${ }^{19}$ and can be removed from the azole nitrogen atom by the action of trifluoroacetic acid ${ }^{13-15,17,19}$ as well as by hydrogenolytic or oxidative methods. ${ }^{13,18}$
Following a well known synthetic strategy for the synthesis of 1 -substituted pyrazolones, ${ }^{8,20,21}$ diethyl ethoxymethylenemalonate was treated with PMB-hydrazine (1) (prepared by reaction of hydrazine with PMB-chloride) in aqueous potassium carbonate to afford the ester (2), which was transformed into the key pyrazolone (3) by alkaline hydrolysis followed by decarboxylation of the intermediate carboxylic acid under acidic conditions (Scheme 1).

Scheme 1. Synthesis of 1-PMB-2-pyrazolin-5-one (3) (tautomer to 5-hydroxy-1-PMB-pyrazole)

Applying the above mentioned acylation conditions $\left(\mathrm{R}^{4} \mathrm{COCl} / \mathrm{Ca}(\mathrm{OH})_{2} /\right.$ dioxane $)$, the transformation of pyrazolone (3) into the corresponding 4 -acyl derivatives (4a-d) proceeded in good yields (Scheme 2). However, upon reaction of 3 with trans-cinnamoyl chloride the desired product (4e) was obtained in lower yield (34%) for some unknown reasons. Removal of the PMB protecting group was achieved by prolonged (ca. 24 h) heating of compounds (4) in trifluoroacetic acid (TFA) at $70^{\circ} \mathrm{C}$ (Scheme 2). Application of the system TFA / anisole in refluxing dichloroethane according to ref. ${ }^{16}$ turned out to be disadvantageous owing to incomplete deprotection and problems arising with the removal of excess anisole. Deprotection of the starting pyrazolone (3) to afford 2-pyrazolin-5-one required markedly longer reaction times compared to those for the 4-acyl derivatives (4a-e).
Under comparable conditions (TFA, $70^{\circ} \mathrm{C}, 24 \mathrm{~h}$) neither the N-benzyl substituted 4-acylpyrazolones ($7 \mathrm{c}-\mathbf{e}$) - obtained from 1-benzylpyrazolone (6) and $\mathrm{R}^{4} \mathrm{COCl} / \mathrm{Ca}(\mathrm{OH})_{2}$ / dioxane - could not be transformed into the corresponding NH-pyrazolones (5c-e), nor deprotection of the 1 -benzyl derivative $(\mathbf{7 f})^{22}$ could be achieved (Scheme 2).

Scheme 2. Synthesis of 4-acyl-1-PMB-pyrazolones (4a-e) and deprotection into 4-acylpyrazolones (5a-e)

The 'active' methylene group in the pyrazole system of $\mathbf{3}$ permits classical C-C bond formation as shown by condensation of 3 with dimethylformamide diethyl acetal (DMFDEA) to afford the (E)-configurated dimethylaminomethylene compound (8), the formation of corresponding (Z)-isomer was not observed. Accordingly, reaction of $\mathbf{3}$ with benzaldehyde gave the (E)-4-benzylidenepyrazolone (10) accompanied by minor amounts of the dimer (11), the latter obviously resulting from Michael-type addition of a second unit of $\mathbf{3}$ to the primary reaction product (10) (Scheme 3) (the determination of the stereochemistry for $\mathbf{8}$ and $\mathbf{1 0}$ is described in detail in the chapter NMR spectroscopic investigations). Treatment of $\mathbf{8}$ with TFA led to the pyrazolone (9a) which partially hydrolyzed into aldehyde (9b) during workup. When recording NMR spectra of 9a in DMSO- d_{6} (containing trace water) also successive formation of $\mathbf{9 b}$ was observed.

Scheme 3. Reaction of $\mathbf{3}$ with DMFDEA and benzaldehyde

NMR SPECTROSCOPIC INVESTIGATIONS

Unambiguous assignment for all proton and carbon resonances was achieved by combined application of some standard NMR spectroscopic techniques, such as NOE-difference experiments, fully ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}$-NMR spectra, APT, HMQC and HMBC spectra as well as experiments with selective excitation such as 1 D -TOCSY, ${ }^{23} 1 \mathrm{D}-\mathrm{HETCOR}^{24}$ and selective long-range INEPT. ${ }^{25,26}$ The ${ }^{15} \mathrm{~N}$-NMR spectra were recorded using the refocused INEPT technique ${ }^{27,28}$ with proton decoupling and - especially - gradient selected, sensitivity enhanced HSQC ${ }^{29-31}$ and HMBC sequences. ${ }^{32}$ It should be emphasized that - owing to the dynamic behavior of most substances investigated and the thus resulting (massive) line broadening - it was sometimes difficult or impossible to observe all expected ${ }^{15} \mathrm{~N}$-NMR signals.

Pyrazolone (3)
The possible tautomeric forms of pyrazolone (3) are displayed in the upper line of Figure 1 or in Scheme 1, respectively. $\mathrm{In}_{\mathrm{CDCl}}^{3}$ solution two sets of signals emerged (ratio $1.7: 1$) with the major component being easily assignable as the CH -isomer $\left(\mathrm{CH}_{2}\right.$ partial structure in the heterocyclic ring) and the minor species as the OH -isomer (possibly in fast exchange with some NH -isomer) (Figure 2). In benzene- d_{6} compound (3) has a very low solubility, in a saturated solution predominance of the CH -form (90%) over the OH -form (10\%) was detected. In more polar DMSO- d_{6} only one signal set emerged which can be attributed to the OH -isomer or to a mixture of OH (far predominating) and NH -isomer (low amount) in fast exchange (Figure 2). Marked line broadening of certain resonances in the spectra of 3 hints to a dynamic behavior. Investigations regarding the tautomerism of pyrazolone (3) and related compounds in protic solvents such as methanol- d_{4} or trifluoroacetic acid- d_{1} will be reported elsewhere. ${ }^{33}$

Figure 2. Selected ${ }^{1} \mathrm{H}$-NMR (italics) and ${ }^{13} \mathrm{C}$-NMR chemical shifts of pyrazolone (3) in CDCl_{3}, benzene- d_{6} and DMSO- d_{6} solution

4-Acylpyrazolones (4a-e) and (7c-e)

The tautomeric behavior of closely related 4-acylpyrazolones has been extensively investigated in some recent publications. ${ }^{6-10}$ Accordingly, it can be assumed that in CDCl_{3} solution the novel compounds (4a-e),

Table $1 .{ }^{1} \mathrm{H}$-NMR chemical shifts (δ, ppm) of 4a-e, 5a-e and $\mathbf{7 c} \mathbf{c} \mathbf{e}$

N-PMB / N-benzyl								
No.	solvent	H-3	NCH_{2}	H-2,6	H-3,5	OMe $(\mathrm{H}-4)$	$\begin{array}{r} \mathrm{OH} \\ \mathrm{NH} \\ \hline \end{array}$	H of 4-substituent R
4a	CDCl_{3}	7.61	5.06	7.26	6.86	3.77	9.08	2.35 (Me)
4a	DMSO- d_{6}	7.79	5.00	7.13	6.88	3.71	8.64	2.28 (Me)
4b	CDCl_{3}	7.60	5.04	7.24	6.84	3.77	9.06	$2.67\left(\mathrm{CH}_{2}\right),{ }^{\text {a }} 1.18\left(\mathrm{CH}_{3}\right)^{\text {a }}$
4b	DMSO- d_{6}	7.79	5.00	7.14	6.87	3.71	6.90	$2.68\left(\mathrm{CH}_{2}\right){ }^{\text {a }} 1.02\left(\mathrm{CH}_{3}\right)^{\text {a }}$
4c	CDCl_{3}	7.77	5.13	7.31	6.88	3.79	9.90	7.90 (Bz H-2,6), 7.59 (Bz H-4), 7.51 (Bz H-3,5)
4c	DMSO- d_{6}	7.68	5.07	7.20	6.90	3.72	7.20	7.80 (Bz H-2,6), 7.60 (Bz H-4), 7.52 (Bz H-3,5)
4d	CDCl_{3}	7.94	5.12	7.30	6.87	3.78	10.09	7.90 (Th H-3), ${ }^{\text {b }} 7.68$ (Th H-5), ${ }^{\text {b }} 7.19$ (Th H-4) ${ }^{\text {b }}$
4d	DMSO- d_{6}	8.02	5.07	7.19	6.89	3.71	8.00	8.02 (Th H-3), ${ }^{\text {c }} 7.96$ (Th H-5), ${ }^{\text {c }} 7.24$ (Th H-4) ${ }^{\text {c }}$
4e	CDCl_{3}	7.77	5.09	7.29	6.87	3.79	7.07	$\begin{aligned} & 7.83(\mathrm{PhCH}),{ }^{\mathrm{d}} 7.04(\mathrm{COCH}=),{ }^{\mathrm{d}} 7.62(\mathrm{Cm} \mathrm{H}-2,6), \\ & 7.42(\mathrm{Cm}(\mathrm{H}-3,4,5) \end{aligned}$
4e	DMSO- d_{6}	8.14	5.02	7.17	6.89	3.72	$4.54{ }^{\text {e }}$	$\begin{aligned} & 7.78 \text { (Cm H-2,6), } 7.62(\mathrm{PhCH}, \mathrm{COCH}=), 7.43 \\ & (\mathrm{Cm} \mathrm{H}-3,4,5) \end{aligned}$
5 a	DMSO- d_{6}	8.00	---	---	---	---	9-14	$2.29(\mathrm{Me})$
5b	DMSO- d_{6}	8.01	---	---	---	---	9-16	$2.69\left(\mathrm{CH}_{2}\right), 1.01\left(\mathrm{CH}_{3}\right)$
5c	DMSO- d_{6}	8.01	---	---	---	---	9-14	7.79 (Bz H-2,6), 7.60 (Bz H-4), 7.50 (Bz H-3,5)
5d	DMSO- d_{6}	8.29	---	---	---	---	9-14	8.03 (Th H-3), ${ }^{\text {c }} 7.97$ (Th H-5) ${ }^{\text {c }} 7.24$ (Th H-4) ${ }^{\text {c }}$
5e	DMSO- d_{6}	8.31	---	---	---	---	$4.03{ }^{\text {e }}$	$7.74(\mathrm{Cm} \mathrm{H}-2,6), 7.63(\mathrm{PhCH}, \mathrm{COCH}=), 7.43$ (Cm H-3,4,5)
7c	CDCl_{3}	7.80	5.20	7.35	7.35	7.33	9.23	7.91 (Bz H-2,6), 7.60 (Bz H4), 7.52 (Bz H-3,5)
7c	DMSO- d_{6}	7.70	5.16	7.23	7.35	7.30	$5.20{ }^{\text {e }}$	7.80 (Bz H2,6), 7.61 (Bz H-4), 7.52 (Bz H-3,5)
7d	CDCl_{3}	7.96	5.20	7.34	7.34	7.33	8.83	7.92 (Th H-3), ${ }^{\text {b }} 7.70$ (Th H-5), ${ }^{\text {b }} 7.20$ (Th H-4) ${ }^{\text {b }}$
7 d	DMSO- d_{6}	8.04	5.15	7.23	7.34	7.30	5.56	8.04 (Th H-3), ${ }^{\text {c }} 7.97$ (Th H-5), ${ }^{\text {c }} 7.25$ (Th H-4) ${ }^{\text {c }}$
$7 \mathrm{e}^{\text {f }}$	CDCl_{3}	7.79	5.16	7.34	7.28 -	7.36	7.65	$\begin{aligned} & 7.84(\mathrm{PhCH}),{ }^{\mathrm{d}} 7.05(\mathrm{COCH}=),{ }^{\mathrm{d}} 7.63(\mathrm{Cm} \mathrm{H}-2,6), \\ & 7.43(\mathrm{Cm}(\mathrm{H}-3,4,5) \end{aligned}$
$7 \mathrm{e}^{\mathrm{f}}$	DMSO- d_{6}	8.17	5.11	7.21	6.89	7.34	6.11	$\begin{aligned} & 7.79(\mathrm{Cm} \mathrm{H}-2,6), 7.63(\mathrm{PhCH}, \mathrm{COCH}=), 7.44 \\ & (\mathrm{Cm} \mathrm{H}-3,4,5) \end{aligned}$

[^0]Table 2. ${ }^{15} \mathrm{~N}$-NMR chemical shifts (δ, ppm) of $\mathbf{4 a} \mathbf{- e}$ and $\mathbf{7 c}, \mathbf{d}$

No.	Solvent	PMB-N $/$ $\mathrm{Bn}-\mathrm{N}$	N
$\mathbf{4 a}$	CDCl_{3}	-189.5	-99.1
4b	CDCl_{3}	-189.8	-100.3
4b	${\text { DMSO- } d_{6}}$	-186.6	a
4c	CDCl_{3}	-189.8	-97.7
4c	DMSO- $_{6}$	-185.2	a
4d	CDCl_{3}	-189.7	-97.7
4d	DMSO-d $_{6}$	-186.5	a
4e	CDCl_{3}	-189.9	-94.6
7c	DMSO- $_{6}$	-186.9	a
7d	DMSO-d $_{6}$	-187.6	a

[^1]Table 3. ${ }^{13} \mathrm{C}$-NMR chemical shifts (δ, ppm) of 4a-e, 5a-e and $\mathbf{7 c} \mathbf{c} \mathbf{e}$

			pyra				N-PMB	/ N-benzyl				
No.	solvent	C-3	C-4	C-5	NCH_{2}	Ph C-1	Ph C-2,6	Ph C-3,5	$\begin{aligned} & \mathrm{Ph} \\ & \mathrm{C}-4 \\ & \hline \end{aligned}$	OMe	$\mathrm{C}=\mathrm{O}$	C of 4-substituent R
4a	CDCl_{3}	138.1	104.2	157.2	49.7	127.5	129.5	114.1	159.4	55.2	195.3	26.0 (Me)
4a	DMSO- d_{6}	139.0	105.5	154.2	48.4	128.6	128.8	113.9	158.7	55.0	191.3	27.2 (Me)
4b	CDCl_{3}	137.8	103.4	157.5	49.6	127.7	129.4	114.1	159.4	55.2	198.8	$32.1\left(\mathrm{CH}_{2}\right), 8.4\left(\mathrm{CH}_{3}\right)$
4b	DMSO-d ${ }_{6}$	138.6	104.7	$154.2{ }^{\text {a }}$	$48.4{ }^{\text {a }}$	128.7	128.8	113.9	158.6	55.0	194.5	$32.0\left(\mathrm{CH}_{2}\right), 8.2\left(\mathrm{CH}_{3}\right)$
4c	CDCl_{3}	138.9	102.4	159.6	49.7	127.6	129.5	114.2	159.5	55.2	190.0	$\begin{aligned} & 137.3 \text { (Bz C-1), } 132.6 \text { (Bz C-4), } 128.7 \text { (Bz C-3,5), } 128.4 \\ & \text { (Bz C-2,6) } \end{aligned}$
4c	DMSO-d ${ }_{6}$	139.7	103.2	155.6	48.8	128.4	129.0	113.9	158.7	55.1	187.7	$\begin{aligned} & 138.4(\mathrm{Bz} \mathrm{C}-1), 131.9(\mathrm{Bz} \mathrm{C}-4), 128.5(\mathrm{Bz} \mathrm{C}-3,5), 128.3 \\ & (\mathrm{Bz} \mathrm{C}-2,6) \end{aligned}$
4d	CDCl_{3}	137.8	101.6	159.3	49.7	127.5	129.5	114.2	159.4	55.2	180.9	141.8 (Th C-2), 133.2 (Th C-5), 131.9 (Th C-3), 128.2 (C-4)
4d	DMSO- d_{6}	138.7	102.7	155.7	48.7	128.4	129.0	113.9	158.7	55.1	178.8	$\begin{aligned} & 143.7 \text { (Th C-2), } 133.6 \text { (Th C-5), } 132.2 \text { (Th C-3), } 128.6 \\ & \text { (C-4) } \end{aligned}$
4 e	CDCl_{3}	137.3	104.3	160.2	49.4	127.8	129.5	114.2	159.4	55.3	183.1	$\begin{aligned} & 143.5(\mathrm{PhCH}), 134.4(\mathrm{Cm} \mathrm{C-}), 130.8(\mathrm{Cm} \mathrm{C-} 4), 129.0 \\ & (\mathrm{Cm} \mathrm{C-}-3,5), 128.5(\mathrm{Cm} \mathrm{C}-2,6), 120.9(\mathrm{COCH}=) \end{aligned}$
4 e	DMSO-d ${ }_{6}$	138.9	105.7	$156.1^{\text {a }}$	48.3	128.6	128.9	113.9	158.7	55.1	$181.6{ }^{\text {a }}$	140.8 (PhCH), 134.7 (Cm C-1), 130.2 (Cm C-4), 128.8 ($\mathrm{Cm} \mathrm{C}-3,5$), $128.5(\mathrm{Cm} \mathrm{C}-2,6), 123.5(\mathrm{COCH}=)$
5 a	DMSO- d_{6}	133.5	$107.2^{\text {a }}$	$160.3{ }^{\text {a }}$	---	---	---	---	---	---	192.2	28.0 (Me)
5b	DMSO- d_{6}	133.3	106.5	160.3	---	---	---	---	---	---	195.4	$32.8\left(\mathrm{CH}_{2}\right), 8.2\left(\mathrm{CH}_{3}\right)$
5 c	DMSO-d ${ }_{6}$	$135.1{ }^{\text {a }}$	104.6	$161.4{ }^{\text {a }}$	---	---	---	---	---	---	189.0	$\begin{aligned} & 138.7(\mathrm{Bz} \mathrm{C}-1), 131.9(\mathrm{Bz} \mathrm{C}-4), 128.4(\mathrm{Bz} \mathrm{C}-3,5), 128.3 \\ & (\mathrm{Bz} \mathrm{C}-2,6) \end{aligned}$
5d	DMSO-d ${ }_{6}$	$134.2{ }^{\text {a }}$	104.0	161.2	---	---	---	---	---	---	179.9	$\begin{aligned} & 143.9 \text { (Th C-2), } 133.7 \text { (Th C-5), } 132.4 \text { (Th C-3), } 128.5 \\ & (\mathrm{C}-4) \end{aligned}$
5 e	DMSO-d ${ }_{6}$	134.1	107.8	161.1	---	---	---	---	---	---	183.1	$\begin{aligned} & 140.8(\mathrm{PhCH}), 134.8(\mathrm{Cm} \mathrm{C}-1), 130.2(\mathrm{Cm} \mathrm{C}-4), 128.9 \\ & (\mathrm{Cm} \mathrm{C}-3,5), 128.3(\mathrm{Cm} \mathrm{C}-2,6), 124.2(\mathrm{COCH}=) \end{aligned}$
7c	CDCl_{3}	139.0	102.4	159.9	50.2	135.4	128.0	128.8	128.1	---	190.0	$\begin{aligned} & 137.2(\mathrm{Bz} \mathrm{C}-1), 132.7(\mathrm{Bz} \mathrm{C}-4), 128.7(\mathrm{Bz} \mathrm{C}-3,5), 128.4 \\ & (\mathrm{Bz} \mathrm{C}-2,6) \end{aligned}$
7c	DMSO-d ${ }_{6}$	139.9	103.3	155.8	49.2	136.6	127.4	128.5	127.5	---	187.7	$\begin{aligned} & 138.4 \text { (Bz C-1), } 131.9 \text { (Bz C-4), } 128.5 \text { (Bz C-3,5), } 128.3 \\ & (\mathrm{Bz} \mathrm{C}-2,6) \end{aligned}$
7d	CDCl_{3}	137.9	101.6	159.6	50.2	135.4	128.0	128.8	128.1	---	180.9	141.8 (Th C-2), 133.2 (Th C-5), 131.9 (Th C-3), 128.2 (C-4)
7d	DMSO- d_{6}	138.8	102.7	155.8	49.2	136.5	127.4	128.5	127.5	---	178.8	$\begin{aligned} & 143.8 \text { (Th C-2), } 133.6 \text { (Th C-5), } 132.2 \text { (Th C-3), } 128.6 \\ & (\mathrm{C}-4) \end{aligned}$
7 e	CDCl_{3}	137.4	104.3	160.6	49.9	135.6	128.6	128.8	128.0	---	182.9	$143.6 \text { (PhCH), } 134.4 \text { (Cm C-1), } 130.8 \text { (Cm C-4), } 129.0$ (Cm C-3,5), $128.0(\mathrm{Cm} \mathrm{C-2,6}), 120.8(\mathrm{COCH}=)$
7 e	DMSO-d ${ }_{6}$	139.0	105.7	156.2	48.8	136.7	127.3	128.5	127.5	---	181.5	$\begin{aligned} & 140.9(\mathrm{PhCH}), 134.7(\mathrm{Cm} \mathrm{C-1}), 130.2(\mathrm{Cm} \mathrm{C-} 4), 128.8 \\ & (\mathrm{Cm} \mathrm{C-}-5), 128.5(\mathrm{Cm} \mathrm{C}-2,6), 123.5(\mathrm{COCH}=) \end{aligned}$

[^2]Table 4. Selected ${ }^{13} \mathrm{C}$, ${ }^{1} \mathrm{H}$ spin coupling constants (Hz) of 4a-e, 5a-e and 7c-e

No.	solvent	${ }^{1} \mathrm{~J}(\mathrm{C}-3, \mathrm{H}-3)$	${ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)$	${ }^{1}$ J($\left.\mathrm{NCH}_{2}\right)$	${ }^{1} \mathrm{~J}(\mathrm{OMe})$	other couplings (R)
4a	CDCl_{3}	188.0	10.6	140.4	143.8	${ }^{1} J(\mathrm{Me})=127.7,{ }^{3} \mathrm{~J}\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.4,{ }^{3} \mathrm{~J}(\mathrm{C}-4, \mathrm{Me})=1.8$
4a	DMSO-d ${ }_{6}$	187.7	9.3	140.2	144.1	${ }^{1} \mathrm{~J}(\mathrm{Me})=127.1$
4b	CDCl_{3}	187.7	10.6	140.1	143.8	${ }^{1} J\left(\mathrm{CH}_{3}\right)=128.5,{ }^{1} J\left(\mathrm{CH}_{2}\right)=126.3,{ }^{2} J\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right)=4.7,{ }^{3} J\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.5,{ }^{2} J\left(\mathrm{CH}_{2}, \mathrm{CH}_{3}\right)=4.4$
4b	DMSO- d_{6}	187.7	9.6	144.4	144.2	${ }^{1} J\left(\mathrm{CH}_{3}\right)=127.3,{ }^{1} J\left(\mathrm{CH}_{2}\right)=125.9,{ }^{2} J\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right)=4.6,{ }^{2} J\left(\mathrm{CH}_{2}, \mathrm{CH}_{3}\right)=4.5$
4c	CDCl_{3}	189.7	11.0	140.5	143.8	${ }^{3} \mathrm{~J}(\mathrm{C}-5, \mathrm{H}-3)=4.9,{ }^{3} \mathrm{~J}\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.5,{ }^{3} \mathrm{~J}\left(\mathrm{C}-5, \mathrm{NCH}_{2}\right)=2.5$
4c	DMSO-d ${ }_{6}$	188.8	10.4	140.8	144.2	
4d	CDCl_{3}	189.0	11.2	140.3	143.9	${ }^{1} J($ Th C-5 $)=185.9,{ }^{1} J($ Th C-4 $)=170.2,{ }^{1} J($ Th C-3 $)=168.5,{ }^{3} J($ Th C- 5, Th H-3 $)=10.9,{ }^{3} J($ Th C-3,Th H-5 $)=$ $9.3,{ }^{3} J($ Th C-2,Th H-4 $)=9.1,{ }^{2} J\left(\right.$ Th C-5,Th H-4) $=7.2,{ }^{2} J($ Th C-2,Th H-3 $)=6.5,{ }^{2} J($ Th C-3, Th H-4) $=5.7$, ${ }^{3} J($ Th C-2,Th H-5 $)=5.6,{ }^{2} J($ Th C-4,Th H-3 $)=4.7,{ }^{3} J\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.5,{ }^{2} J(\mathrm{Th} \mathrm{C}-4, \mathrm{Th} \mathrm{H}-5)=4.1$
4d	DMSO-d ${ }_{6}$	189.2	10.5	140.3	144.2	${ }^{1} J($ Th C-5 $)=187.7,{ }^{1} J($ Th C-4 $)=170.2,{ }^{1} J($ Th C-3 $)=169.3,{ }^{3} J($ Th C-5,Th H-3 $)=10.6,{ }^{3} J($ Th C-3, Th H-5 $)=$ 9.1, ${ }^{3} J($ Th C-2,Th H-4 $)=8.7,{ }^{2} J\left(\right.$ Th C-5,Th H-4) $=7.4,{ }^{2} J($ Th C-2,Th H-3 $)=7.2,{ }^{2} J($ Th C-3,Th H-4 $)=5.8$, ${ }^{3} J($ Th C-2,Th H-5 $)=5.6,{ }^{2} J($ Th C-4,Th H-3 $)=4.5,{ }^{2} J($ Th C-4,Th H-5 $)=4.5$
4e	CDCl_{3}	188.5	10.6	140.3	143.8	${ }^{1} \mathrm{~J}(\mathrm{PhCH})=156.0,{ }^{1} \mathrm{~J}(\mathrm{COCH}=)=157.1,{ }^{2} \mathrm{~J}(\mathrm{COCH}=, \mathrm{PhCH})=2.3,{ }^{3} \mathrm{~J}\left(\mathrm{C}-5, \mathrm{NCH}_{2}\right)=4.2$
4e	DMSO- d_{6}	189.0	9.7	a	144.1	
5 a	DMSO-d d_{6}	a	a	---	---	${ }^{1} \mathrm{~J}(\mathrm{Me})=127.1,{ }^{2} \mathrm{~J}(\mathrm{CO}, \mathrm{Me})=5.5$
5b	DMSO-d ${ }_{6}$	188.7	a	---	---	${ }^{1} J\left(\mathrm{CH}_{3}\right)=127.3,{ }^{1} J\left(\mathrm{CH}_{2}\right)=126.4,{ }^{2} J\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right)=4.4,{ }^{2} J\left(\mathrm{CH}_{2}, \mathrm{CH}_{3}\right)=4.4$
5c	DMSO- d_{6}	a	a	---	---	
5d	DMSO-d ${ }_{6}$	${ }^{\text {a }}$	8.8	---	---	${ }^{1} J($ Th C-5 $)=187.7,{ }^{1} J($ Th C-4 $)=170.1,{ }^{1} J($ Th C-3 $)=169.4,{ }^{3} J($ Th C-5,Th H-3 $)=10.7,{ }^{3} J($ Th C-3, Th H-5 $)=$ $9.2,{ }^{3} J($ Th C-2,Th H-4 $)=8.7,{ }^{2} J\left(\right.$ Th C-5,Th H-4) $=7.3,{ }^{2} J($ Th C-2,Th H-3 $)=7.2,{ }^{2} J($ Th C-3,Th H-4) $=5.8$, ${ }^{3} J($ Th C-2,Th H-5 $)=5.6,{ }^{2} J($ Th C-4,Th H-3 $)=4.4,{ }^{2} J($ Th C-4,Th H-5 $)=4.4$
5e	DMSO-d ${ }_{6}$	a	a	---	---	
7c	CDCl_{3}	189.7	11.0	140.3	---	${ }^{3} \mathrm{~J}(\mathrm{C}-5, \mathrm{H}-3)=5.0,{ }^{3} \mathrm{~J}\left(\mathrm{C}-5, \mathrm{NCH}_{2}\right)=2.5$
7c	DMSO-d ${ }_{6}$	188.6	10.4	141.1	---	${ }^{2} \mathrm{~J}\left(\mathrm{Ph} \mathrm{C-1}, \mathrm{NCH}_{2}\right)=5.0,{ }^{3} \mathrm{~J}\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.1,{ }^{3} \mathrm{~J}\left(\mathrm{C}-5, \mathrm{NCH}_{2}\right)=2.2,{ }^{3} \mathrm{~J}(\mathrm{C}-5, \mathrm{H}-3)=5.0$
7d	CDCl_{3}	189.0	11.2	140.5	---	$\begin{aligned} & { }^{1} J\left(\text { Th C-5 } 50185.9,{ }^{1} J(\text { Th C-4 })=170.3,{ }^{1} J(\text { Th C-3 })=168.5,{ }^{3} J(\text { Th C-5,Th H-3 })=10.9,{ }^{3} J(\text { Th C-3, Th H-5 })=\right. \\ & 9.3,{ }^{3} J\left(\text { Th C-2,Th H-4) }=9.1,{ }^{2} J\left(\text { Th C-5,Th H-4) }=7.2,{ }^{2} J(\text { Th C-2,Th H-3 })=6.5,{ }^{2} J(\text { Th C-3,Th H-4 })=5.6,\right.\right. \\ & { }^{3} J(\text { Th C-2,Th H-5 })=5.6,{ }^{3} J(\mathrm{C}-5, \mathrm{H}-3)=4.8,{ }^{2} J(\text { Th C-4,Th H-3 })=4.7,{ }^{2} J(\text { Th C-4,Th H-5 })=4.1,{ }^{3} J(\mathrm{C}-5, \mathrm{NCH} 2) \\ & =2.6 \end{aligned}$
7d	DMSO-d ${ }_{6}$	189.2	10.5	140.9	---	${ }^{1} J($ Th C-5 $)=187.7,{ }^{1} J($ Th C-4 $)=170.3,{ }^{1} J($ Th C-3 $)=169.4,{ }^{3} J($ Th C-5,Th H-3 $)=10.6,{ }^{3} J($ Th C-3, Th H-5 $)=$ $9.2,{ }^{3} J($ Th C-2,Th H-4 $)=8.8,{ }^{2} J($ Th C-5,Th H-4 $)=7.4,{ }^{2} J($ Th C-2,Th H-3 $)=7.3,{ }^{2} J($ Th C-3,Th H-4 $)=5.8$, ${ }^{3} J($ Th C-2,Th H-5 $)=5.6,{ }^{3} J(\mathrm{C}-5, \mathrm{H}-3)=5.3,{ }^{2} J($ Th C-4,Th H-3 $)=4.4,{ }^{2} J($ Th C-4,Th H-5 $)=4.4$
7 e	CDCl_{3}	188.6	10.8	140.2	---	${ }^{1} \mathrm{~J}(\mathrm{PhCH})=156.2,{ }^{1} \mathrm{~J}(\mathrm{COCH}=)=157.2,{ }^{2} \mathrm{~J}(\mathrm{COCH}=, \mathrm{PhCH})=2.3$
7e	DMSO-d ${ }_{6}$	189.1	9.7	a	---	${ }^{1} \mathrm{~J}(\mathrm{COCH}=)=160.4,{ }^{2} \mathrm{~J}(\mathrm{COCH}=, \mathrm{PhC} \underline{H})=4.0$

[^3](7c) and ($\mathbf{7 d}$) are present as 5-hydroxypyrazoles stabilized by an intramolecular hydrogen bond (form (\mathbf{B}^{\prime}) in Figure 1) whereas in DMSO- d_{6} form (B) - possibly in fast (compared to the NMR-timescale) exchange with minor amounts of NH -isomer (C) - dominates. Again, the dynamic behavior becomes apparent upon line broadening effects, especially in the ${ }^{13} \mathrm{C}$-NMR spectra. Compounds (4) and (7) exhibit very consistent ${ }^{15} \mathrm{~N}$-NMR chemical shift data with $\delta(\mathrm{N}-1)$ ca. - 190 (pyrrole-type) and $\delta(\mathrm{N}-2)$ in the range from -95 to -100 (pyridine type nitrogen) (Table 2). In Figure 3, some diagnostic NMR spectroscopic data which support the above considerations are presented. The NMR data of compounds (4) and (7) are collected in Tables 1-4.

Figure 3. Some diagnostic NMR spectroscopic data for 4-acylpyrazolones (4)

4-Acylpyrazolones (5)
Recordings of pyrazolones (5) were carried out in DMSO- d_{6} solution due to solubility reasons. In all spectra marked line broadening effects can be observed which prevent the accurate determination of, for instance, ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ spin coupling constants. Thus, only in case of 5 d the diagnostic pyrazole ${ }^{2} \mathrm{~J}(\mathrm{C}-4, \mathrm{H}-3)$ coupling constant could be determined. Its magnitude of 8.8 Hz hints to the predominance of the OH -isomer, however, some contribution of NH -isomer is probable.

Compounds (8-11)
(E)-Configuration regarding the exocyclic $\mathrm{C}=\mathrm{C}$ bond of $\mathbf{8}$ unambiguously follows from the ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}$-NMR spectrum. Thus, the pyrazole C-5 signal ($\delta 136.1$) exhibits a ${ }^{3} J$ coupling of 7.3 Hz to the alkene proton (trans-coupling) whereas the pyrazole $\mathrm{C}-3$ (\equiv pyrazolone $\mathrm{C}=\mathrm{O}, \delta 166.4$) signal is split by a markedly smaller coupling to the latter proton (${ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz}$, cis-coupling) (Figure 4). This assignment is confirmed by a strong NOE between pyrazole $\mathrm{H}-5$ and $\mathrm{NMe}(3.14 \mathrm{ppm})$ (Figure 4) and the complete absence of an NOE between pyrazole H-5 and alkene-H [in (Z)-configuration these protons should be spatially close]. Moreover, the ${ }^{13} \mathrm{C}$-NMR chemicals shifts of the pyrazole carbon atoms in $\mathbf{8}$ are in good agreement with those reported for related compounds with unambiguously assigned stereochemistry ${ }^{9}$ and reflect well the
influence of the enamino N -atom (shielding of pyrazole C - 5 due to γ-effects). As the data of 9a closely resemble those of $\mathbf{8}$ (Figure 4) also (E)-configuration can be attributed to the former. Both $\mathbf{8}$ and $\mathbf{9 a}$ show two well separated signals for each methyl group within the NMe_{2} moiety due to hindered rotation around the $\mathrm{C}-\mathrm{N}$ bond. ${ }^{9}$ Determination of the stereochemistry of the 4-benzylidene derivative (10) was based on similar experiments: the strong NOEs between pyrazole $\mathrm{H}-5$ and the phenyl protons, the magnitude of the vicinal (pyrazole C-5, alkene-H) coupling (${ }^{3} J=9.8 \mathrm{~Hz}$) as well as the ${ }^{13} \mathrm{C}$-NMR chemical shifts of pyrazole C-5 and pyrazole C-3 clearly assign (E)-configuration at the excocyclic $\mathrm{C}=\mathrm{C}$ bond. Expectedly, in the NMR spectra of $\mathbf{1 1}$ the two 1-PMB-5-hydroxypyrazol-4-yl units give rise to one signal set (2:1 ratio to the central $\mathrm{Ph}-\mathrm{CH}$ substructure) (Figure 4). An interesting phenomenon is the non-equivalence of the methylene protons in the PMB substructure of (AB-system, ${ }^{2} J=15.1 \mathrm{~Hz}$) which can be attributed to the fact that the central sp^{3}-hybridized carbon atom in $\mathbf{1 1}$ represents a prochiral center. According to its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR data compound ($\mathbf{9 b}$), resulting from hydrolysis of $\mathbf{9 a}$, is present as aldehyde (CHO partial structure: H 9.86 ppm , C 183.2 ppm , in DMSO- d_{6}) and not as hydroxymethylene compound (see Scheme 1).

Figure 4. Characteristic ${ }^{1} \mathrm{H}$-NMR (italics) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts, ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ coupling constants (Hz) and NOEs used for structural assignments of 8, 9a, 10, and 11

EXPERIMENTAL

Melting points were determined on a Reichert-Kofler hot-stage microscope and are uncorrected. MS spectra were obtained on a Shimadzu QP 1000 instrument (EI, 70 eV), HRMS spectra (ESI-TOF) on a Biosystem Q-Star and HRMS spectra (EI) on a Finnigan MAT 8230 instrument. IR spectra were recorded on a Perkin-Elmer FTIR 1605 spectrophotometer. The NMR spectra were obtained on a Varian UnityPlus 300 spectrometer (299.95 MHz for ${ }^{1} \mathrm{H}, 75.43 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) at $28{ }^{\circ} \mathrm{C}$. The center of the solvent signal was used as an internal standard which was related to TMS with $\delta 7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{CDCl}_{3}\right), \delta 2.49 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ in DMSO- d_{6}), $\delta 7.16 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ in benzene- $\left.d_{6}\right) \delta 77.0 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ in $\left.\mathrm{CDCl}_{3}\right), \delta 39.5 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ in DMSO- $\left.d_{6}\right)$ and δ $128.4 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ in benzene- $\left.d_{6}\right)$. ${ }^{15} \mathrm{~N}$-NMR spectra $(50.69 \mathrm{MHz})$ were obtained on a Bruker Avance 500 spectrometer using a 'directly' detecting broadband observe probe and were referenced against neat, external nitromethane (coaxial capillary). Digital resolutions were $0.25 \mathrm{~Hz} /$ data point in the ${ }^{1} \mathrm{H}$ and 0.4 $\mathrm{Hz} /$ data point in the ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra (gated decoupling) and $\leq 59 \mathrm{~Hz} /$ data point in the ${ }^{15} \mathrm{~N}$-NMR spectra. In the description of the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra the terms $\mathrm{C}-3, \mathrm{C}-4$ and $\mathrm{C}-5$ refer to the carbon atoms of the pyrazole nucleus. As syntheses were mainly devoted to obtain material for the NMR-spectroscopic investigations no attempts were made to optimize the yields. Systematic names according to IUPAC recommendations were generated with ACD/Name and checked manually. ${ }^{34}$

4-Methoxybenzylhydrazine (1) ${ }^{35}$

To hydrazine hydrate ($80.0 \mathrm{~g}, 1.6 \mathrm{~mol}$, purity $>98 \%$) was added 4-methoxybenzyl chloride ($25.0 \mathrm{~g}, 0.16$ $\mathrm{mol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was then stirred at rt for 2 h . After removal of MeOH under reduced pressure, the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, the combined etheral phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was subjected to vacuum distillation to afford $12.61 \mathrm{~g}(52 \%)$ of a colorless oil, bp $145^{\circ} \mathrm{C} / 16 \mathrm{mbar}\left(\right.$ lit., $\left.{ }^{35} \mathrm{bp} 139^{\circ} \mathrm{C} / 5 \mathrm{Torr}\right)$, which solidified on standing (mp 30-35 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): ~ \delta(\mathrm{ppm}) 7.21$ (m, 2H, Ph H-2,6), 6.86 (m, 2H, Ph H-3,5), $3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm}) 158.2(\mathrm{Ph}$ C-4), 131.1 ($\mathrm{Ph} \mathrm{C}-1$), 129.7 ($\mathrm{Ph} \mathrm{C-2,6)}$,113.5 ($\mathrm{Ph} \mathrm{C}-3,5$), $58.3\left(\mathrm{CH}_{2}\right), 55.0(\mathrm{OMe})$.

Ethyl 5-Hydroxy-1-(4-methoxybenzyl)-1H-pyrazol-4-carboxylate (2)

To a mixture of $\mathbf{1}(11.50 \mathrm{~g}, 75.5 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(10.46 \mathrm{~g}, 75.5 \mathrm{mmol})$ in water $(300 \mathrm{~mL})$ was added diethyl ethoxymethylenemalonate $(16.30 \mathrm{~g}, 75.5 \mathrm{mmol})$. The mixture was refluxed for 3 h and then let to reach rt . After washing with $\mathrm{AcOEt}(3 \times 50 \mathrm{~mL})$ the aqueous phase was acidified to pH 2 with concd HCl and was then extracted with $\operatorname{AcOEt}(3 \times 100 \mathrm{~mL})$. The latter ethyl acetate phases were washed several times with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was dried to afford 14.55 g
(75%) of a yellow solid, pure according to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. For analytical purposes some material was recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ to give yellowish crystals of mp 105-106 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 6.7-9.3 (very br s, 1H, OH), 7.59 (s, 1H, H-3), 7.24 (m, 2H, Ph H-2,6), 6.85 (m, 2H, Ph H-3,5), 5.08 ($\mathrm{s}, 2 \mathrm{H}$, NCH_{2}), $4.30\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.34\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right):{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}): $\delta(\mathrm{ppm}) 11.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 7.13$ (m, 2H, Ph H-2,6), 6.87 (m, 2H, Ph H-3,5), $5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.16\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.23\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 165.9\left(\mathrm{C}=\mathrm{O},{ }^{3} \mathrm{~J}\left(\mathrm{CO}, \mathrm{CH}_{2}\right)=3.4 \mathrm{~Hz}\right), 159.4\left(\mathrm{Ph} \mathrm{C}-4,{ }^{2} J(\mathrm{Ph} \mathrm{C}-4, \mathrm{OMe})=4.2 \mathrm{~Hz}\right)$, $156.2(\mathrm{C}-5), 137.8\left(\mathrm{C}-3,{ }^{\mathrm{I}} \mathrm{J}=190.8 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)=9.6 \mathrm{~Hz}\right), 129.3(\mathrm{Ph} \mathrm{C}-2,6), 127.8(\mathrm{Ph} \mathrm{C-1}), 114.1(\mathrm{Ph}$ $\mathrm{C}-3,5), 94.1(\mathrm{C}-4), 60.4\left(\mathrm{OCH}_{2},{ }^{1} J=147.8,{ }^{2} J\left(\mathrm{OCH}_{2}, \mathrm{CH}_{3}\right)=4.4 \mathrm{~Hz}\right), 55.2\left(\mathrm{OMe},{ }^{1} J=143.8 \mathrm{~Hz}\right), 50.1$ $\left(\mathrm{NCH}_{2},{ }^{\mathrm{I}} J=140.2 \mathrm{~Hz},{ }^{3} J\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.5 \mathrm{~Hz}\right), 14.3\left(\mathrm{CH}_{3},{ }^{1} J=127.2 \mathrm{~Hz},{ }^{2} J\left(\underline{C H}_{3}, \mathrm{CH}_{2}\right)=2.6 \mathrm{~Hz}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 162.4\left(\mathrm{C}=\mathrm{O},{ }^{3} \mathrm{~J}\left(\mathrm{CO}, \mathrm{CH}_{2}\right)=3.4 \mathrm{~Hz}\right), 158.6(\mathrm{Ph} \mathrm{C-4}), 153.8(\mathrm{C}-5), 138.8$ $\left(\mathrm{C}-3,{ }^{\mathrm{I}} J=190.0 \mathrm{~Hz}\right), 128.8(\mathrm{Ph} \mathrm{C-1}), 128.8(\mathrm{Ph} \mathrm{C}-2,6), 113.9(\mathrm{Ph} \mathrm{C}-3,5), 95.2\left(\mathrm{C}-4,{ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)=9.2 \mathrm{~Hz}\right)$, $58.9\left(\mathrm{OCH}_{2},{ }^{\mathrm{I}} J=147.1 \mathrm{~Hz},{ }^{2} J\left(\mathrm{OCH}_{2}, \mathrm{CH}_{3}\right)=4.5 \mathrm{~Hz}\right), 55.0\left(\mathrm{OMe},{ }^{\mathrm{I}} J=144.2 \mathrm{~Hz}\right), 48.9\left(\mathrm{NCH}_{2},{ }^{\mathrm{I}} J=140.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} J\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.4 \mathrm{~Hz}\right), 14.4\left(\mathrm{CH}_{3},{ }^{1} J=126.7 \mathrm{~Hz},{ }^{2} J\left(\underline{\mathrm{CH}}_{3}, \mathrm{CH}_{2}\right)=2.6 \mathrm{~Hz}\right) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ (ppm) -100.6 (N-2), -189.7 (N-1); ${ }^{15} \mathrm{~N}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta(\mathrm{ppm})-98.6(\mathrm{~N}-2),-184.3(\mathrm{~N}-1)$; IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 1700(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 276\left(\mathrm{M}^{+}, 5\right), 230(4), 202$ (14), 174 (8), 121 (100), 91 (9), 77 (14). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $60.86 ; \mathrm{H}, 5.84 ; \mathrm{N}, 10.14$. Found: C, $60.95 ; \mathrm{H}, 5.86 ; \mathrm{N}, 10.12$.

2-(4-Methoxybenzyl)-2,4-dihydro-3H-pyrazol-3-one [tautomer to 1-(4-Methoxybenzyl)-1H-pyrazol-5-ol] (3)

A mixture of ester (2) ($13.40 \mathrm{~g}, 48.5 \mathrm{mmol}$), 35% aqueous $\mathrm{KOH}(57.4 \mathrm{~mL}, 358 \mathrm{mmol})$ and $\mathrm{MeOH}(25 \mathrm{~mL})$ was heated to reflux for 8 h and was then stirred at rt for further 12 h . Under cooling with an ice-bath, the mixture was brought to $\mathrm{pH} 2-3$ by careful addition of 2 N HCl and was then refluxed for 6 h to complete decarboxylation. Then MeOH was removed under reduced pressure and the residue was extracted with AcOEt $(3 \times 100 \mathrm{~mL})$. The combined ethyl acetate phases were washed several times with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to afford $9.41 \mathrm{~g}(95 \%)$ of a yellowish powder, pure according to the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. For analytical purposes some material was recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ to give yellowish crystals of mp 135-137 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: (ratio CH-Isomer to OH-Isomer 1.7 : 1): CH-isomer: $\delta(\mathrm{ppm}) 7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} \mathrm{H}-2,6), 7.26$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$), 6.86 (m, 2H, Ph H-3,5), 4.78 (s, 2H, NCH 2), 3.79 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.25 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}-4$); (OH -isomer): $\delta(\mathrm{ppm}) 7.8-9.2$ (very br s, $1 \mathrm{H}, \mathrm{OH}$), 7.16 (d, ${ }^{3} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.12 (m, 2H, Ph H-2,6), 6.77 (m, 2H, Ph H-3,5), $5.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-4), 4.98 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$: OH-isomer: $\delta(\mathrm{ppm}) 10.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.12 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.10 (m, 2H, Ph H-2,6), 6.86 (m, 2H, Ph H-3,5), 5.33 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $4.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (benzene- d_{6}): (ratio CH -isomer to OH -isomer $10: 1$): CH-isomer: $\delta(\mathrm{ppm}) 7.33$ (m, 2H, Ph H-2,6), 6.74 (m, 2H, Ph H-3,5), 6.23 (t, J=1.3 Hz, 1H, H-3), 5.00 (s ,
$2 \mathrm{H}, \mathrm{NCH}_{2}$), $3.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.14(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4)$; OH -isomer: $\delta(\mathrm{ppm}) 5.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: (ratio CH -isomer to OH -Isomer $1.7: 1$): CH-isomer: $\delta(\mathrm{ppm}) 171.3$ (C-5), 159.2 ($\mathrm{Ph} \mathrm{C}-4$), $146.3\left(\mathrm{C}-3,{ }^{1} J=196.0 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-3, \mathrm{H}-4)=5.5 \mathrm{~Hz}\right), 129.7$ (Ph C-2,6), $128.5\left(\mathrm{Ph} \mathrm{C-1)} ,114.0(\mathrm{Ph} \mathrm{C}-3,5), 55.2\left(\mathrm{OMe},{ }^{1} J=143.7 \mathrm{~Hz}\right), 47.5\left(\mathrm{NCH}_{2},{ }^{1} J=139.2 \mathrm{~Hz}\right.\right.$, $\left.{ }^{3} J\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.4 \mathrm{~Hz}\right), 39.4\left(\mathrm{C}-4,{ }^{1} J=134.1 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)=11.3 \mathrm{~Hz}\right) ; \mathrm{OH}$-isomer: $\delta(\mathrm{ppm}) 159.1$ (Ph C-4), $156.2(\mathrm{C}-5), 137.3\left(\mathrm{C}-3,{ }^{1} J=182.9 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-3, \mathrm{H}-4)=5.1 \mathrm{~Hz}\right), 129.1(\mathrm{Ph} \mathrm{C-2,6}), 128.7(\mathrm{Ph} \mathrm{C}-1)$, $114.0(\mathrm{Ph} \mathrm{C-3,5}), 88.9\left(\mathrm{C}-4,{ }^{1} J=179.6 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)=8.9 \mathrm{~Hz}\right), 55.2\left(\mathrm{OMe},{ }^{1} J=143.7 \mathrm{~Hz}\right), 48.6\left(\mathrm{NCH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d d_{6} : OH-isomer: $\delta(\mathrm{ppm}) 158.4$ (Ph C-4), $152.0(\mathrm{C}-5), 137.5\left(\mathrm{C}-3,{ }^{1} \mathrm{~J}=182.9 \mathrm{~Hz}\right.$, $\left.{ }^{2} J(\mathrm{C}-3, \mathrm{H}-4)=5.1 \mathrm{~Hz}\right), 129.9(\mathrm{Ph} \mathrm{C-1}), 128.6\left(\mathrm{Ph} \mathrm{C-2,6)}\right.$, $113.7\left(\mathrm{Ph} \mathrm{C-3,5)}, 85.9(\mathrm{C}-4), 55.0\left(\mathrm{OMe},{ }^{1} J=\right.\right.$ 144.1 Hz), $48.7\left(\mathrm{NCH}_{2}\right)$; ${ }^{13} \mathrm{C}$-NMR (benzene- d_{6}): CH-isomer: $\delta(\mathrm{ppm}) 160.2\left(\mathrm{Ph} \mathrm{C-4)}\right.$, $145.5\left(\mathrm{C}-3,{ }^{1} \mathrm{~J}=\right.$ $\left.194.9 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-3, \mathrm{H}-4)=5.6 \mathrm{~Hz}\right), 130.6(\mathrm{Ph} \mathrm{C-2,6}), 130.1(\mathrm{Ph} \mathrm{C-1}), 114.7(\mathrm{Ph} \mathrm{C-3,5}), 55.1\left(\mathrm{OMe},{ }^{1} J=143.7\right.$ $\mathrm{Hz}), 48.0\left(\mathrm{NCH}_{2}\right), 38.9\left(\mathrm{C}-4,{ }^{1} J=134.1 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)=5.6 \mathrm{~Hz}\right) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \mathrm{CH}$-isomer: δ (ppm) -39.4 (N-2), -189.8 ($\mathrm{N}-1$); OH-isomer: $\delta(\mathrm{ppm})$-150.5 ($\mathrm{N}-2$), $-196.9(\mathrm{~N}-1) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}$ (DMSO- d_{6}): OH-isomer: $\delta(\mathrm{ppm})$-99.0 (N-2), -189.9 (N-1); ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ (benzene- d_{6}): CH-isomer: $\delta(\mathrm{ppm})-37.7(\mathrm{~N}-2)$, -190.9 ($\mathrm{N}-1$); MS (m/z, \%): 203 ($\mathrm{M}^{+}-1,14$), 176 (15), 146 (21), 134 (12), 121 (100), 91 (13), 77 (21). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 64.69; H, 5.92; N, 13.72. Found: C, 64.90; H, 5.93; N, 13.54.

4-Acylation of Pyrazolones (3) and (6): Synthesis of Compounds (4) and (7) (General Procedure)

With stirring, to a mixture of pyrazolone (3) $(1.02 \mathrm{~g}, 5 \mathrm{mmol})$ or $(\mathbf{6})^{8}(871 \mathrm{mg}, 5 \mathrm{mmol})$ and $\mathrm{Ca}(\mathrm{OH})_{2}(0.73$ $\mathrm{g}, 10 \mathrm{mmol})$ in dry 1,4-dioxane (5 mL) was added a solution of the appropriate carboxylic acid chloride (5 mmol) in 1,4-dioxane (5 mL) and the mixture was refluxed for 2 h . After cooling to $\mathrm{rt}, 2 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ was added and stirring was continued for further 1 h . Then the mixture was poured onto water (50 mL). After standing for 30 min the precipitate was filtered off, washed several times with water, dried and purified as described below.

1-[5-Hydroxy-1-(4-methoxybenzyl)-1H-pyrazol-4-yl]ethanone (4a)

From 3 and acetyl chloride $0.92 \mathrm{~g}(75 \%)$ of yellow-brownish leaves were obtained, pure according to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. An analytical sample was obtained by recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ affording slightly yellowish crystals of mp 121-122 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 1651(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 246\left(\mathrm{M}^{+}, 21\right)$, 121 (100), 112 (20). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 63.40 ; H, 5.73; N, 11.38. Found: C, 63.13; H, 5.64; N, 11.37.

1-[5-Hydroxy-1-(4-methoxybenzyl)-1H-pyrazol-4-yl]propan-1-one (4b)

Reaction of 3 with propionyl chloride gave $1.12 \mathrm{~g}(86 \%)$ of a yellow solid, pure according to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. An analytical sample was obtained by recrystallization from diisopropyl ether affording a
slightly yellowish powder of $\mathrm{mp} 86-89^{\circ} \mathrm{C}$, crystal modifications starting at $\sim 75^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)$ 1663 ($\mathrm{C}=\mathrm{O}$); MS (m/z, \%): $260\left(\mathrm{M}^{+}, 46\right), 245$ (19), 136 (32), 121 (100), 77 (32). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 64.60; H, 6.20; N, 10.76. Found: C, 64.31; H, 6.31; N, 10.85.

[5-Hydroxy-1-(4-methoxybenzyl)-1H-pyrazol-4-yl](phenyl)methanone (4c)

From reaction of 3 with benzoyl chloride $0.94 \mathrm{~g}(61 \%)$ of a brownish was obtained, pure according to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. An analytical sample was obtained by recrystallization from EtOH affording beige crystals of mp 98-99 ${ }^{\circ} \mathrm{C}$. IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 1625(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 308\left(\mathrm{M}^{+}, 1\right), 260(4), 136$ (9), 121 (100), 77 (26). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 70.12; H, 5.23; N, 9.09. Found: C, 69.85; H, 5.31; N, 9.16.

[5-Hydroxy-1-(4-methoxybenzyl)-1H-pyrazol-4-yl](2-thienyl)methanone (4d)

Reaction of $\mathbf{3}$ with thiophene-2-carbonyl chloride afforded $0.89 \mathrm{~g}(57 \%)$ of a beige solid, pure according to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. An analytical sample was obtained by recrystallization from EtOH affording yellowish needles of mp 111-114 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 1604(\mathrm{C}=\mathrm{O})$; MS (m/z, \%): $314\left(\mathrm{M}^{+}, 5\right), 202(5), 180(8), 136$ (10), 121 (100), 77 (17). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 61.13; H, 4.49; N, 8.91. Found: C, 61.28; H, 4.42; N, 9.20.
(2E)-1-[5-Hydroxy-1-(4-methoxybenzyl)-1H-pyrazol-4-yl]-3-phenylprop-2-en-1-one (4e)
The raw product obtained from reaction of $\mathbf{3}$ with trans-cinnamoyl chloride was recrystallized from EtOH to yield $0.57 \mathrm{~g}(34 \%)$ of yellow crystals, $\mathrm{mp} 128-131^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 1662(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 334$ ($\mathrm{M}^{+}, 4$), 136 (21), 121 (100), 77 (31). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 71.84 ; H, 5.43; N, 8.38. Found: C, 71.60; H, 5.55; N, 8.40.

(1-Benzyl-5-hydroxy-1H-pyrazol-4-yl)(phenyl)methanone (7c)

Reaction of $\mathbf{6}$ and benzoyl chloride gave 1.35 g (97\%) of a yellow solid, pure according to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. An analytical sample was obtained by recrystallization from EtOH affording beige crystals of mp $100-101^{\circ} \mathrm{C} . \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 278\left(\mathrm{M}^{+}, 62\right), 174$ (26), 105 (48), 91 (100), 77 (26). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.37; H, 5.07; N, 10.07. Found: C, 73.36; H, 5.19; N, 10.13.
(1-Benzyl-5-hydroxy-1H-pyrazol-4-yl)(2-thienyl)methanone (7d)
Reaction of 6 and thiophene-2-carbonyl chloride gave $1.11 \mathrm{~g}(78 \%)$ of a yellow solid, pure according to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. An analytical sample was obtained by recrystallization from EtOH affording slightly
mauve crystals of mp 132-135 ${ }^{\circ} \mathrm{C} . \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 284\left(\mathrm{M}^{+}, 31\right), 172(30), 144$ (23), 111 (38), 91 (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 63.36$; H, 4.25; N, 9.85. Found: C, 63.09; H, 4.21; N, 9.75.
(2E)-1-[1-Benzyl-5-hydroxy-1H-pyrazol-4-yl]-3-phenylprop-2-en-1-one (7e) Compound (7e) was prepared according to ref. ${ }^{8}$

Deprotection of 4-Acyl-1-PMB-pyrazolones (4a-e): Synthesis of Compounds (5a-e) (General Procedure)

With stirring, a mixture of 4-acylpyrazolones (4a-e) (1 mmol) and $2.85 \mathrm{~g}(25 \mathrm{mmol})$ of trifluoroacetic acid (TFA) was heated at $70-75^{\circ} \mathrm{C}$ for 24 h After removal of excess TFA under reduced pressure the residue was dried and worked-up as described below.

1-(5-Hydroxy-1H-pyrazol-4-yl)ethanone (5a)

The residue obtained upon treatment of $\mathbf{4 a}(246 \mathrm{mg}, 1.0 \mathrm{mmol})$ with TFA was washed with acetone and recrystallized from glacial acetic acid to give $76 \mathrm{mg}(60 \%)$ of colorless crystals, $\mathrm{mp} 205-209{ }^{\circ} \mathrm{C}$, crystal modifications beginning at $\sim 155^{\circ} \mathrm{C}$. $\mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 126\left(\mathrm{M}^{+}, 65\right), 111(100)$. Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 47.62; H, 4.80; N, 22.21. Found: C, 47.65; H, 4.57; N, 21.96.

1-(5-Hydroxy-1H-pyrazol-4-yl)propan-1-one (5b)

The residue obtained upon treatment of $\mathbf{4 b}(260 \mathrm{mg}, 1 \mathrm{mmol})$ with TFA was washed with acetone and recrystallized from glacial acetic acid to give $93 \mathrm{mg}(66 \%)$ of colorless crystals, $\mathrm{mp} 185-186{ }^{\circ} \mathrm{C}$, crystal modifications beginning at $\sim 160^{\circ} \mathrm{C}$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 1695,1657(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 140\left(\mathrm{M}^{+}, 30\right), 111$ (100), 43 (30). Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 51.42; H, 5.75; N, 19.99. Found: C, 51.43; H, 5.77; N, 19.59.

(5-Hydroxy-1H-pyrazol-4-yl)(phenyl)methanone (5c)

The residue obtained upon treatment of $\mathbf{4 c}(308 \mathrm{mg}, 1 \mathrm{mmol})$ with TFA was washed with ethyl acetate and recrystallized from glacial acetic acid to give $107 \mathrm{mg}(57 \%)$ of colorless crystals, $\mathrm{mp} 218-221^{\circ} \mathrm{C}$, crystal modifications starting at $\sim 170{ }^{\circ} \mathrm{C}$, (lit., ${ }^{11} \mathrm{mp} 265-270{ }^{\circ} \mathrm{C}$). IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 1645(\mathrm{C}=\mathrm{O})$; MS (m/z, \%): $188\left(\mathrm{M}^{+}, 51\right), 110(100), 105$ (68), 77 (76), 53 (66). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 63.82; H, 4.28; N, 14.89. Found: C, 63.55; H, 4.09; N, 14.85.

(5-Hydroxy-1H-pyrazol-4-yl)(2-thienyl)methanone (5d)

The residue obtained upon treatment of $\mathbf{4 d}(314 \mathrm{mg}, 1 \mathrm{mmol})$ with TFA was washed with ethyl acetate and recrystallized from glacial acetic acid to give $161 \mathrm{mg}(83 \%)$ of almost colorless crystals, $\mathrm{mp} 247-249{ }^{\circ} \mathrm{C}$,
crystal modifications starting at $\sim 185{ }^{\circ} \mathrm{C}$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 1628(\mathrm{C}=\mathrm{O})$; MS (m/z, \%): $194\left(\mathrm{M}^{+}, 35\right), 110$ (38), 84 (32). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 49.47$; H, 3.11; N, 14.42. Found: C, 49.50; H, 3.19; N, 14.21.

(2E)-1-(5-Hydroxy-1H-pyrazol-4-yl)-3-phenylprop-2-en-1-one (5e)

The residue obtained upon treatment of $\mathbf{4 e}(334 \mathrm{mg}, 1 \mathrm{mmol})$ with TFA was washed with toluene to give 30 $\mathrm{mg}(14 \%)$ of a grey powder, $\mathrm{mp} 194-196^{\circ} \mathrm{C}$, crystal modifications starting at $\sim 185^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)$ 1661 ($\mathrm{C}=\mathrm{O}$); MS (m/z, \%): 214 (M+, 64), 131 (14), 111 (27), 104 (100), 77 (22). HRMS: Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: 214.0742. Found: 214.0749.
(4E)-4-Dimethylaminomethylene-2-(4-methoxybenzyl)-2,4-dihydro-3H-pyrazol-3-one (8)
A mixture of pyrazolone (3) ($1.02 \mathrm{~g}, 5 \mathrm{mmol}$), DMFDEA ($0.74 \mathrm{~g}, 5 \mathrm{mmol}$) and toluene (20 mL) was refluxed for 3 h and then allowed to cool to rt . The precipitate was filtered off and washed with toluene to afford $0.63 \mathrm{~g}(49 \%)$ of yellow crystals, $\mathrm{mp} 171-172^{\circ} \mathrm{C}$. After concentration of the combined mother liquors additional $0.59 \mathrm{~g}(46 \%)$ of pure $\mathbf{8}$ were obtained, giving a total yield of $1.22 \mathrm{~g}(95 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.49 ($\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}$), 7.47 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), 7.24 (m, 2H, Ph H-2,6), 6.80 (m, 2H, Ph H-3,5), 4.89 (s, 2H, NCH_{2}), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.27\left(\mathrm{~s}, 3 \mathrm{H}\right.$, NMe cis to $=\mathrm{CH}$), $3.14\left(\mathrm{~s}, 3 \mathrm{H}\right.$ NMe trans to $=\mathrm{CH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 166.4\left(\mathrm{C}-3,{ }^{3} J\left(\mathrm{C}-3, \mathrm{NCH}_{2}\right)=2.2 \mathrm{~Hz},{ }^{3} J(\mathrm{C}-3, \mathrm{H}-5)={ }^{3} J(\mathrm{C}-3,=\mathrm{CH})=4.1 \mathrm{~Hz}\right), 158.7(\mathrm{Ph}$ $\mathrm{C}-4), 150.7\left(=\mathrm{CH},{ }^{1} J=168.0 \mathrm{~Hz},{ }^{3} J\left(=\mathrm{CH}, \mathrm{NMe}_{2}\right)=3.7 \mathrm{~Hz}\right), 136.1\left(\mathrm{C}-5,{ }^{1} J=188.5 \mathrm{~Hz},{ }^{3} J(\mathrm{C}-5,=\mathrm{CH})=7.3\right.$ $\mathrm{Hz}), 130.1$ ($\mathrm{Ph} \mathrm{C}-1$), 129.2 ($\mathrm{Ph} \mathrm{C}-2,6$), $113.8\left(\mathrm{Ph} \mathrm{C-3,5)} ,99.6\left(\mathrm{C}-4,{ }^{2} J(\mathrm{C}-4, \mathrm{H}-5)=11.1 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-4,=\mathrm{CH})=\right.\right.$ $1.8 \mathrm{~Hz}), 55.2\left(\mathrm{OMe},{ }^{1} J=143.6 \mathrm{~Hz}\right), 47.3\left(\mathrm{NCH}_{2},{ }^{1} J=138.3 \mathrm{~Hz},{ }^{3} J\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.4 \mathrm{~Hz}\right), 46.9(\mathrm{NMe}$ cis to $\left.=\mathrm{CH},{ }^{1} \mathrm{~J}=139.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{NMe},=\mathrm{CH})=5.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{NMe}, \mathrm{NMe})=3.3 \mathrm{~Hz}\right), 40.3\left(\mathrm{NMe}\right.$ trans to $=\mathrm{CH},{ }^{1} J=$ $\left.139.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{NMe},=\mathrm{CH})=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{NMe}, \mathrm{NMe})=3.5 \mathrm{~Hz}\right) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})-84.4(\mathrm{~N}-1)$, -191.8 (N-2), -272.5 (NMe_{2}); IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 1663(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 259\left(\mathrm{M}^{+}, 8\right), 216(17), 121$ (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $64.85 ; \mathrm{H}, 6.61 ; \mathrm{N}, 16.21$. Found: C, $64.83 ; \mathrm{H}, 6.66 ; \mathrm{N}, 16.09$.
(4E)-4-Dimethylaminomethylene-2,4-dihydro-3H-pyrazol-3-one (9a) and
5-Hydroxy-1H-pyrazole-4-carbaldehyde (9b)
Compound (8) ($259 \mathrm{mg}, 1.0 \mathrm{mmol}$) was treated with TFA as described for the synthesis of compounds (5). After removal of excess TFA the residue was taken up in ethyl acetate and extracted twice with 2 N HCl . The aqueous layers were collected and evaporated under reduced pressure to afford 105 mg of a yellowish oil, containing $\mathbf{9 a} \cdot \mathrm{HCl}$ and 20% of the aldehyde (9b) according to ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data (later NMR experiments in DMSO- d_{6} solution confirmed a continuously ongoing hydrolysis of $\mathbf{9 a}$ into $\mathbf{9 b}$). To obtain pure 9a the residue was subjected to preparative TLC (silica gel, eluent: EtOAc / MeOH, 1:1) to give 26 mg (29\%) of yellow crystals, mp 205-208 ${ }^{\circ} \mathrm{C}$ (dec). Compound (9a): ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta(\mathrm{ppm}) 10.77$ (br s,
$1 \mathrm{H}, \mathrm{NH}), 7.59\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{H}-5, \mathrm{NH})=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 7.39(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 3.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}$ cis to $=\mathrm{CH}), 3.15(\mathrm{~s}$, 3 H , NMe trans to $=\mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right): \delta(\mathrm{ppm}) 168.4(\mathrm{C}-3), 150.2\left(=\mathrm{CH},{ }^{1} \mathrm{~J}=168.2 \mathrm{~Hz}\right), 137.4$ $\left(\mathrm{C}-5,{ }^{1} J=188.1 \mathrm{~Hz},{ }^{3} J(\mathrm{C}-5,=\mathrm{CH})=7.6 \mathrm{~Hz},{ }^{3} J(\mathrm{C}-5, \mathrm{NH})=7.6 \mathrm{~Hz}\right), 98.3(\mathrm{C}-4), 46.4$ (NMe cis to $\left.=\mathrm{CH}\right), 40.3$ (NMe trans to $=\mathrm{CH})$; IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 1670(\mathrm{C}=\mathrm{O})$; MS (m/z, \%): $139\left(\mathrm{M}^{+}, 100\right), 124$ (20), 95 (38), 82 (29). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}^{+}: 140.0818$. Found: 140.0823. 9a• $\mathrm{HCl}{ }^{36}{ }^{3} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}): $\delta(\mathrm{ppm}) 8.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.54(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 3.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}$ cis to $=\mathrm{CH}), 3.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}$ trans to $=\mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right): \delta(\mathrm{ppm}) 163.9(\mathrm{C}-3), 157.1(=\mathrm{CH}), 136.8$ (C-5), $97.6(\mathrm{C}-4), 48.7(\mathrm{NMe}$ cis to $=\mathrm{CH}), 42.2(\mathrm{NMe}$ trans to $=\mathrm{CH})$.
Compound (9b): ${ }^{371}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): ~ \delta(\mathrm{ppm}) 9.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.90(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{OH}), 7.94(\mathrm{~s}, 1 \mathrm{H}$, H-3); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta(\mathrm{ppm}) 183.2\left(\mathrm{CHO},{ }^{1} \mathrm{~J}=171.8 \mathrm{~Hz}\right), 160.8(\mathrm{C}-5), 134.1\left(\mathrm{C}-3,{ }^{1} J=189.0 \mathrm{~Hz}\right)$, $107.6\left(\mathrm{C}-4,{ }^{2} J(\mathrm{C}-4, \mathrm{CHO})=24.1 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)=8.2 \mathrm{~Hz}\right)$.
(4E)-4-Benzylidene-2-(4-methoxybenzyl)-2,4-dihydro-3H-pyrazol-3-one (10) and 4,4'-(Phenylmethylene)bis[1-(4-methoxybenzyl)-1H-pyrazol-5-ol] (11)
A solution of pyrazolone (3) ($204 \mathrm{mg}, 1 \mathrm{mmol}$) and distilled benzaldehyde ($111 \mathrm{mg}, 1.05 \mathrm{mmol}$) in toluene $(2 \mathrm{~mL})$ was stirred for 2 h at $80^{\circ} \mathrm{C}$. After removal of the solvent the oily residue was subjected to preparative TLC (silica gel, eluent: EtOAc) to afford $77 \mathrm{mg}(26 \%)$ of $\mathbf{1 0}$ (faster eluted component, $\mathrm{Rf} \sim 0.9$) as yellow crystals of $\mathrm{mp} 118-119{ }^{\circ} \mathrm{C}$ and $36 \mathrm{mg}(14 \%)$ of $\mathbf{1 1}$ (slower eluted component, $\mathrm{Rf} \sim 0.3$) as brownish oil.
Compound (10): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.75(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.67(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CHPh}$ $\mathrm{H}-2,6), 7.50(\mathrm{~m}, 3 \mathrm{H},=\mathrm{CHPh} \mathrm{H}-3,4,5), 7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} \mathrm{H}-2,6), 6.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} \mathrm{H}-3,5), 4.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 164.5(\mathrm{C}-3), 159.2\left(\mathrm{Ph} \mathrm{C-4)}, 143.5\left(=\mathrm{CH},{ }^{1} \mathrm{~J}=157.2 \mathrm{~Hz}\right.\right.$, $\left.{ }^{3} J(=\underline{\mathrm{C}} \mathrm{H},=\mathrm{CHPh} \mathrm{H}-2,6)=4.9 \mathrm{~Hz}\right), 137.9\left(\mathrm{C}-5,{ }^{1} J=195.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{C}-5,=\mathrm{CH})=9.8 \mathrm{~Hz}\right), 133.8(=\mathrm{CHPh} \mathrm{C}-1)$, 132.2 (=CHPh C-4), 131.2 (=CHPh C-2,6), 129.6 ($\mathrm{Ph} \mathrm{C}-2,6$), 129.4 (=CHPh C-3,5), 128.8 ($\mathrm{Ph} \mathrm{C}-1$), 126.0 $\left(\mathrm{C}-4,{ }^{2} J(\mathrm{C}-4, \mathrm{H}-5)=11.4 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-4,=\mathrm{CH})=2.9 \mathrm{~Hz}\right), 114.1(\mathrm{Ph} \mathrm{C-3}, 5), 55.3\left(\mathrm{OMe},{ }^{1} J=143.7 \mathrm{~Hz}\right), 47.8$ $\left(\mathrm{NCH}_{2},{ }^{1} J=139.0 \mathrm{~Hz},{ }^{3} J\left(\mathrm{NCH}_{2}, \mathrm{Ph} \mathrm{H}-2,6\right)=4.4 \mathrm{~Hz}\right) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})-48.9(\mathrm{~N}-1),-193.0$ (N-2); IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 1680(\mathrm{C}=\mathrm{O})$; MS (m/z, \%): $292\left(\mathrm{M}^{+}, 20\right), 121$ (100), 77 (19). HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} 292.1212$. Found: 292.1219.
Compound (11): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 9.0-10.0(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{OH}), 7.25$ (m, $5 \mathrm{H}, \mathrm{CHPh} \mathrm{H}-2,3,4,5,6$), $7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph} \mathrm{H}-2,6), 6.83(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-3), 6.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph} H-3,5), 4.84$ and $4.79\left(\mathrm{AB}-\mathrm{system},{ }^{2} J(\mathrm{~A}, \mathrm{~B})=\right.$ $\left.15.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.69(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 159.3(\mathrm{Ph} \mathrm{C-4})$, 157.2 (C-5), 141.7 (CHPh C-1), $135.3\left(\mathrm{C}-3,{ }^{1} J=182.0 \mathrm{~Hz},{ }^{3} J(\mathrm{C}-3, \mathrm{CH})=5.2 \mathrm{~Hz}\right), 129.1(\mathrm{Ph} \mathrm{C}-2,6), 128.4$ (CHPh C-3,5), 128.2 (Ph C-1), 127.8 (CHPh C-2,6), 126.5 (CHPh C-4), 114.0 (Ph C-3,5), 106.7 (C-4, $\left.{ }^{2} J(\mathrm{C}-4, \mathrm{H}-3)=7.5 \mathrm{~Hz},{ }^{2} J(\mathrm{C}-4, \mathrm{CH})=7.5 \mathrm{~Hz}\right), 55.2\left(\mathrm{OMe},{ }^{1} J=143.8 \mathrm{~Hz}\right), 48.2\left(\mathrm{NCH}_{2},{ }^{1} J=140.2 \mathrm{~Hz}\right), 36.8$
$\left(\mathrm{CH},{ }^{1} \mathrm{~J}=125.4 \mathrm{~Hz}\right) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})-198.5(\mathrm{~N}-1),-176.8(\mathrm{~N}-2) ; \mathrm{MS}(\mathrm{ESI})(\mathrm{m} / \mathrm{z}, \%): 497$ $\left(\mathrm{M}+\mathrm{l}^{+}, 100\right), 293$ (29), 205 (53), 185 (19). HRMS (ESI-TOF): Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{H}^{+}: 497.2183$. Found: 497.2170.

ACKNOWLEDGEMENTS

We are grateful to Prof. Dr. G. Reznicek and Ing. P. Unteregger for recording the high resolution MS spectra.

REFERENCES

1. J. Elguero, 'Comprehensive Heterocyclic Chemistry: Pyrazoles and their Benzo Derivatives', Vol. 5; ed. by A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, pp. 167-303.
2. K. Kirschke, 'Houben-Weyl: Methoden der Organischen Chemie', Vol. E8b, ed. by E. Schaumann, Thieme Verlag, Stuttgart - New York, 1994, pp. 399-763.
3. J. Elguero, C. Marzin, and A. R. Katritzky, 'Advances in Heterocyclic Chemistry, Suppl. 1: The Tautomerism of Heterocycles', Academic Press, New York, 1976, pp. 313-336.
4. V. I. Minkin, A. D. Garnovskii, J. Elguero, A. R. Katritzky, and O. V. Denisko, 'The tautomerism of heterocycles: Five-membered rings with two or more heteroatoms', Advances in Heterocyclic Chemistry, 2000, 76, 157-323; and references cited therein.
5. H. Dorn, J. Prakt. Chem., 1973, 315, 382.
6. L. N. Kurkovskaya, N. N. Shapet'ko, A. S. Vitvitskaya, and A. Y. Kvitko, J. Org. Chem. USSR (Engl. Transl.), 1977, 13, 1618; original paper: Zh. Org. Khim., 1977, 13, 1750.
7. W. Holzer, K. Mereiter, and B. Plagens, Heterocycles, 1999, 50, 799.
8. W. Holzer and I. Krca, Heterocycles, 2003, 60, 2323.
9. W. Holzer and L. Hallak, Heterocycles, 2004, 63, 1311.
10. W. Holzer, C. Kautsch, C. Laggner, R. M. Claramunt, M. Pérez-Torralba, I. Alkorta, and J. Elguero, Tetrahedron, 2004, 60, 6791.
11. H. Wamhoff, D. Schramm, and F. Korte, Synthesis, 1971, 216.
12. B. S. Jensen, Acta Chem. Scand., 1959, 13, 1668.
13. M. Begtrup, Bull. Soc. Chim. Belg., 1988, 97, 573.
14. M. Begtrup, P. Larsen, and P. Vedsø, Acta Chem. Scand., 1992, 46, 972.
15. A. Werner, A. Sánchez-Migallón, A. Fruchier, J. Elguero, C. Fernández-Castano, and C. FocesFoces, Tetrahedron, 1995, 51, 4779.
16. C. Subramanyam, Synth. Commun., 1995, 25, 761.
17. J. Eskildsen, J. Kristensen, P. Vedsø, and M. Begtrup, J. Org. Chem., 2001, 66, 8654.
18. I. A. Zavialov, V. H. Dahanukar, H. Nguyen, C. Orr, and D. R. Andrews, Org. Lett., 2004, 6, 2237.
19. D. R. Buckle and C. J. M. Rockell, J. Chem. Soc., Perkin Trans. 1, 1982, 627.
20. A. Michaelis, Liebigs Ann. Chem., 1911, 385, 1.
21. T. Curtius and F. Schneiders, J. Prakt. Chem., 1912, 85, 37.
22. W. Holzer, R. M. Claramunt, M. Pérez-Torralba, D. Guggi, and T. H. Brehmer, J. Org. Chem., 2003, 68, 7943.
23. D. G. Davis and A. Bax, J. Am. Chem. Soc., 1985, 107, 7197.
24. S. K. Sarkar and A. Bax, J. Magn. Reson., 1985, 62, 109.
25. A. Bax, J. Magn. Reson., 1984, 57, 314.
26. T. Jippo, O. Kamo, and N. Nagayama, J. Magn. Reson., 1986, 66, 344.
27. G. A. Morris and R. Freeman, J. Am. Chem. Soc., 1979, 101, 760.
28. D. P. Burum and R. R. Ernst, J. Magn. Reson., 1980, 39, 163.
29. L. E. Kay, P. Keifer, and T. Saarinen, J. Am. Chem. Soc., 1992, 114, 10663.
30. A. G. Palmer III, J. Cavanagh, P. E. Wright, and M. Rance, J. Magn. Reson., 1991, 93, 151.
31. J. Schleucher, M. Schwendinger, M. Sattler, P. Schmidt, O. Schedletzky, S. J. Glaser, O. W. Sørensen, and C. Griesinger, J. Biomol. NMR, 1994, 4, 301.
32. W. Willker, D. Leibfritz, R. Kerssebaum, and W. Bermel, Magn. Reson. Chem., 1993, 31, 287.
33. W. Holzer and G. A. Eller, manuscript in preparation.
34. ACD/Name, version 8.05, Advanced Chemistry Development, Inc., Toronto ON, Canada, www.acdlabs.com, 2004.
35. J. I. Finneman and J. C. Fishbein, J. Am. Chem. Soc., 1995, 117, 4228.
36. M. K. Pedersen, I. T. Birk, A. B. Orth, B. K. Singh, B. Tecle, V. Kameswaran, and S. S. Szuces, 2002, WO 2002006512 (Chem. Abstr., 2002, 136, 97843).
37. S. Nishijo and C. Fukuda, 1953, JP 28001588 (Chem. Abstr., 1954, 48, 68274).

[^0]: ${ }^{\mathrm{a}}{ }^{3} J\left(\mathrm{CH}_{3}, \mathrm{CH}_{2}\right)=7.4 \mathrm{~Hz} . \quad{ }^{\mathrm{b}} 3(\mathrm{Th} \mathrm{H}-4, \mathrm{Th} \mathrm{H}-5)=4.9 \mathrm{~Hz},{ }^{3} J(\mathrm{Th} \mathrm{H}-3, \mathrm{Th} \mathrm{H}-4)=3.8 \mathrm{~Hz},{ }^{4} J(\mathrm{Th} \mathrm{H}-3, \mathrm{Th} \mathrm{H}-5)=1.1 \mathrm{~Hz} . \quad{ }^{\mathrm{c}} J(\mathrm{Th}$ $\mathrm{H}-4, \mathrm{Th} \mathrm{H}-5)=5.0 \mathrm{~Hz},{ }^{3} J(\mathrm{Th} \mathrm{H}-3, \mathrm{Th} \mathrm{H}-4)=3.8 \mathrm{~Hz},{ }^{4} J(\mathrm{Th} \mathrm{H}-3, \mathrm{Th} \mathrm{H}-5)=1.1 \mathrm{~Hz}$.
 ${ }^{d^{3}} J(\mathrm{PhCH}, \mathrm{COCH}=)=15.7 \mathrm{~Hz}$. ${ }^{\mathrm{e}}$ Together with trace $\mathrm{H}_{2} \mathrm{O} .{ }^{\mathrm{f}}$ See ref. 8.

[^1]: ${ }^{\mathrm{a}}$ Not found.

[^2]: ${ }^{\text {a }}$ Broad signal.

[^3]: ${ }^{a}$ Not unambiguously determined.

